Deep Learning Approach with LSTM for Daily Streamflow Prediction in a Semi-Arid Area: A Case Study of Oum Er-Rbia River Basin, Morocco

نویسندگان

چکیده

Daily hydrological modelling is among the most challenging tasks in water resource management, particularly terms of streamflow prediction semi-arid areas. Various methods were applied order to deal with this complex phenomenon, but recently data-driven models have taken a better space, given their ability solve problems time series. In study, we employed Long Short-Term Memory (LSTM) network simulate daily over Ait Ouchene watershed (AIO) Oum Er-Rbia river basin Morocco, based on temporal sequence situ and remotely sensed hydroclimatic data ranging from 2001 2010. The analysis adopted work three-dimension input required by LSTM model (1); samples used three splitting approaches: 70% dataset as training, considering year cross-validation method; (2) length; (3) features using two different scenarios. results demonstrate that performs poorly default scenario, whereas best during testing found length 30 days approach 3 (R2 = 0.58). addition, fed lagged scenario Forward Feature Selection (FFS) method provides high performance accuracy 2 0.84) 20 days. Eventually, applications related resources management where are limited, use deep learning technique able create predictive accuracy, which can be enhanced right combination subset FFS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

technical and legal parameters for determination of river boundary,( case study haraz river)

چکیده با توسعه شهر نشینی و دخل و تصرف غیر مجاز در حریم رودخانه ها خسارات زیادی به رودخانه و محیط زیست اطراف آن وارده می شود. در حال حاضر بر اساس آئین نامه اصلاح شده بستر و حریم رودخانه ها، حریم کمی رودخانه که بلافاصله پس از بستر قرار می گیرد از 1 تا20 متر از منتهی الیه طرفین بستر رودخانه تعیین، که مقدار دقیق آن در هر بازه از رودخانه مشخص نیست. در کشورهای دیگر روشهای متفاوتی من جمله: درصد ریسک...

15 صفحه اول

Simulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model

Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent   aim of the research is t...

متن کامل

Daily river flow forecasting in a semi-arid region using twodatadriven

Rainfall-runoff relationship is very important in many fields of hydrology such as water supply and water resourcemanagement and there are many models in this field. Among these models, the Artificial Neural Network (ANN) wasfound suitable for processing rainfall-runoff and opened various approaches in hydrological modeling. In addition,ANNs are quick and flexible approaches which provide very ...

متن کامل

Analysis of Farms Performance Using Different Sources of Irrigation Water: A Case Study in a Semi-Arid Area

Improving production efficiency is the main objective of government action to avoid efficiency losses and to increase the income of farmers. The aim of this study was to analyze performance levels of farms in the irrigated perimeter of Tadla in Morocco, according to the source of irrigation water. Thus, technical, allocative and economic efficiency were analyzed for farms in this area. To estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water

سال: 2023

ISSN: ['2073-4441']

DOI: https://doi.org/10.3390/w15020262